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Abstract
A t–J1–J2 model is constructed to describe the spin-1 bosons in optical lattices in the strong
correlation limit. In the parameter region of J1 < J2, with the slave-boson-mean-field approach,
it is found that two kinds of condensed phases may exist: a condensate with spin singlet pairs
and a condensate with ferro-quadruple long range order coexisting with singlet pairs. A
first-order quantum phase transition occurs at the point J1 = 0. The finite-temperature phase
transition in a cubic optical lattice was also discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The optical lattice creates a convenient environment for
studying the strongly correlated systems of cold atoms. It also
provides an ideal platform to simulate conventional condensed
matter systems because a variety of physical parameters, such
as the interactions among the atoms, the dimensions of the
system, the bandwidth and even the internal degrees of freedom
of the particles, can be exactly controlled. More importantly,
with a pure optical trap, it becomes possible to study the cold
atoms with higher hyperfine spins.

For the spinor bosons, because the freedom of spin is
released in optical traps, the ground state of the systems
splits into different phases with different spin configurations.
Compared to the other high spin boson systems the property
of spin-1 bosons in an optical lattice is much simpler and
fundamental. In fact, the research of spin-1 bosons in an optical
lattice has been underway for many years. Experimentally,
BEC of the cold atoms with hyperfine spin F = 1 have
been achieved [1, 2] and the transition from superfluid to Mott
insulator has also been observed in the spin-1 cold atom system
in an optical lattice [3]. Much work on theory has been done
on this aspect [4–6]. Different from that of spinless bosons,
the ground state of high spin (in this paper, spin-1) boson
systems have richer structure. For the spin-1 Bose condensate
in an optical lattice, a polar state and ferromagnetic state were
proposed by Ho [4]. Spin singlet states and spin nematic states
were investigated by Zhou [5].

Even so, most of the previous studies still focused on the
Mott phase or the weakly correlated condensation phase and
spin-1 boson systems with fractional filling factor in an optical

lattice were seldom touched. In this paper, we concentrate
ourselves on the BEC state of spin-1 bosons in both square
and cubic optical lattices in the strong correlation limit. The
ground state of this system will remain in BEC naturally.
As the t–J model for spin- 1

2 fermions can be constructed
from the Hubbard model in the large-U limit [7], we will
construct a similar model (t–J1–J2 model) to describe the
spin-1 boson system with fractional filling factor in the same
large-U limit (here, U0 and U2). The structure of the present
paper is organized as follows: in the subsequent section,
we construct the model Hamiltonian from the spinor boson
Hubbard model [4, 6]. A slave-boson-mean-field approach
is applied to this model in section 3. As in the spin- 1

2 t–J
model [8], spin singlet boson pairs may exist in the condensate.
In addition, a quantum phase transition is found and the finite-
temperature phase transition in the cubic lattice is derived. A
discussion and concluding remarks are given in the last section.

2. The model

We start our problem from the spin-1 Bose–Hubbard model in
an optical lattice [4, 6]:

H = −t
∑

〈i, j〉,α
(a†

i,αa j,α + h.c.) + U0

2

∑

i

ni (ni − 1)

+ U2

2

∑

i

(S2
i − 2ni ) − μ

∑

i

ni , (1)

where a†
i,α is the creation operator of atoms with spin

component α on site i ; ni and Si are the atom number
and spin operators on site i , respectively; μ denotes the
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Figure 1. (a) The phase diagram of the SBBM model in square and
cubic lattices with J1 = − cos ϕ, J2 = − sin ϕ. F represents
ferromagnetic phase, AF is the antiferromagnetic phase, FQ means
the ferro-quadruple long range order phase and AFQ is the
antiferro-quadruple long range order phase. (b) The parameter
regions favor quintet and singlet pairs. When J2 > J1

(− 3π

4 < ϕ < π

4 ) singlet pairs are favorable. When J2 < J1

( π

4 < ϕ < 5π

4 ) quintet pairs are favorable. Our concentration is on
the singlet pair region (black).

chemical potential and t is the hopping integral of atoms
between two nearest-neighbor sites; U0 and U2 are the Hubbard
repulsion constants of atoms in the spin-0 and spin-2 channels,
respectively; 〈i, j〉 denotes the nearest neighbor. The scattering
channel of total spin S = 1 is prohibited because of the
symmetry requirement of the wavefunctions. In the case of
t � U0, U2, we can treat the t terms in the Hamiltonian (1) as
a perturbation. Up to the second-order perturbation expansion,
we get the effective interaction of atoms as [9]

Hint = J0

∑

〈i, j〉
ni n j − J1

∑

〈i, j〉
Si · S j − J2

∑

〈i, j〉
(Si · S j )

2 (2)

with J1 = 2t2

U2
, J2 = 2t2

3U2
+ 4t2

3U0
, and J0 = J2 − J1. The above

expression is quite similar to that of the t–J model. However,
in the spin- 1

2 systems non-trivial scattering only occurs in the
spin singlet channel and a term of Si ·S j is enough to describe
the spin correlation, while in our case an additional term of
(Si · S j )

2 must be included to describe the extra non-trivial
scattering in the spin-2 channel. The whole model Hamiltonian
is

H = −t
∑

〈i, j〉,α
Pa†

i,αa j,α P + J0

∑

〈i, j〉
ni n j

− J1

∑

〈i, j〉
Si · S j − J2

∑

〈i, j〉
(Si · S j )

2 (3)

where P · · · P means the single occupation condition ni � 1.
Exactly at ni = 1, the model becomes the so-called spin-
1 bilinear–biquadratic model (SBBM). The SBBM has been
studied for many years and it presents a rich phase diagram
with the variation of J1/J2. By setting J1 = − cos ϕ, J2 =
− sin ϕ, the phase diagram can be given with the variation of
the angle ϕ. In 1D, we do not get agreement on the phase
diagram in the region of − 3π

4 < ϕ < −π
2 . Whether in

this region there exists a phase transition from a nematic state
to a dimer state is still controversial [9–11]. In 2D or 3D,
the most acceptable phase diagram [10, 12, 13] is shown in
figure 1(a).

Obviously, the quantum states of each single site in the
new Hamiltonian are projected to be either empty or singly
occupied states. It is convenient to adopt the following slave-
boson representation: a†

i,α → a†
i,α fi , ai,α → f †

i ai,α , where

a†
i,α and f †

i are the particle and hole creation operators on

site i , respectively. Both a†
i,α, ai,α and f †

j , f j obey the boson
commutation relations. In this representation, the constraint
condition

∑
α a†

i ai � 1 can be expressed as

∑

α

a†
i,αai,α + f †

i fi = 1.

The effective Hamiltonian (3) can be written as

H = −t
∑

〈i, j〉,α
( f †

j fi a
†
i,αa j,α + h.c.) + J0

∑

〈i, j〉
ni n j

− J1

∑

〈i, j〉
Si · S j − J2

∑

〈i, j〉
(Si · S j )

2

− λ
∑

i

(
1 −

∑

α

a†
i,αai,α − f †

i fi

)
(4)

where λ is the Lagrangian multiplier. There should also be
a chemical potential term here, but in the mean-field theory
we used below these two terms have the same effect and we
combine the chemical potential term into the Lagrangian term.
In this model, two atoms on two nearest-neighbor sites may
form a bound pair. The boson pair can be either a spin singlet
or a spin quintet. We use (3) to calculate the energy of a two-
site unit:

H |0, 0〉 = J0 + 2J1 − 4J2|0, 0〉,
H |1, m1〉 = 0,

H |2, m2〉 = J0 − 2J1 − J2|2, m2〉,
(5)

where in |S, ms〉 S is the total spin of the two atoms and
ms is the magnetism of the total spin. For some atoms, if
U0 < U2(J1 < J2) (like 23Na), it is favorable for adjacent
bosons to form singlet pairs. If U0 > U2(J1 > J2) (like 87Rb),
quintet pairs are more favorable. In this paper we concentrate
on the singlet pairs. The region of singlet pairs with parameter
ϕ is given in figure 1(b).

3. Slave-boson-mean-field approach

We introduce three boson operators [13, 14]:

bi1 = 1√
2
(ai,−1 − ai,1)

bi2 = −i√
2
(ai,−1 + ai,1)

bi3 = ai,0.

(6)

2
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The representation of the SU(3) algebra can be expressed as

Sx
i = −i(b†

i2bi3 − b†
i3bi2),

Sy
i = −i(b†

i3bi1 − b†
i1bi3),

Sz
i = −i(b†

i1bi2 − b†
i2bi1),

Q0
i = 1

3 (b
†
i1bi1 + b†

i2bi2 − 2b†
i3bi3),

Q2
i = −i(b†

i1bi1 − b†
i2bi2),

Qxy
i = −(b†

i1bi2 + b†
i2bi1),

Qyz
i = −(b†

i2bi3 + b†
i3bi2),

Qxz
i = −(b†

i1bi3 + b†
i3bi1).

(7)

The first three operators {Sx
i , Sy

i , Sz
i } are the spin operators

and the others {Q0
i , Q2

i , Qxy
i , Qyz

i , Qxz
i } are the quadrupole

operators of the spin-1 bosons on site i . In the new
representation, the Hamiltonian can be expressed as

H = −t
∑

〈i, j〉,α
( f †

j fi b
†
i,αb j,α + h.c.) + J0

∑

〈i, j〉
ni n j

−
∑

〈i, j〉

∑

α,β

[J1b†
i,αbi,βb†

j,βb j,α

+ (J2 − J1)b
†
i,αbi,βb†

j,αb j,β]
− λ

∑

i

(
1 −

∑

α

b†
i,αbi,α − f †

i fi

)
. (8)

For the Hamiltonian (3), there are two SU(3)-invariant points:
ϕ = − 3π

4 and π
4 . At these two points, there is no quadruple

order, i.e. 〈Q〉 = 0. The analysis shows that in the parameter
range of − 3π

4 < ϕ < π
4 the bosons prefer to form singlet pairs.

In addition, ferro-quadruple order is also favored in this region.
Those allow us to do the following mean-field approximations:

dα = −〈b†
iαb jβ〉,

Q1 = −〈b†
i1bi2 + b†

i2bi1〉,

Q2 = −〈b†
i2bi3 + b†

i3bi2〉,

Q3 = −〈b†
i1bi3 + b†

i3bi1〉,

〈 f †
i 〉 = 〈 fi 〉 = √

δ,

where β = 1, 2, 3, δ is the hole density. Considering the
SU(2) symmetry of the Hamiltonian, we set d1 = d2 = d3 and
Q1 = Q2 = Q3. With these approximations, the Hamiltonian
can be diagonalized as

H =
∑

k

[Ek1(α
†
1α1 + α

†
2α2 + α

†
3α3 + α

†
4α4)

+ Ek2(α
†
5α5 + α

†
6α6)] +

∑

k

(2Ek1 + Ek2 − 3
2 a)

+ 3
2 z(3J2 − 4J1)d

2 N + 3
2 z J1 Q2 N

− 1
2 z(1 − δ)2 N − λ(1 − δ)N, (9)

where
Ek1 = 1

2

√
(a − c)2 − b2,

Ek1 = 1
2

√
(a + 2c)2 − b2,

a = −tzδγk + J0z(1 − δ) + λ,

b = (3J2 − 4J1)zdγk

c = z J1 Q,

with γk = 2
z (cos kx + cos ky + cos kz) (z = 6) for the cubic

lattice and γk = 1
2 (cos kx + cos ky) (z = 4) for the square

lattice. The free energy and the ground state energy are

G =
∑

k

2KBT

{
2 ln

[
cosh

(
Ek1

2KBT

)]

+ ln

[
cosh

(
Ek2

2KBT

)]}

− 3
2 a + 3

2 z J1 Q2 N + 3
2 z(3J2 − 4J1)d

2 N

− 1
2 z(1 − δ)2 N − λ(1 − δ)N,

Eg =
∑

k

(2Ek1 + Ek2 − 3
2 a) + 3

2 z(3J2 − 4J1)d
2 N

+ 3
2 z J1 Q2 N − 1

2 z(1 − δ)2 N − λ(1 − δ)N.

(10)

Minimizing the free energy leads to the following self-
consistent equations:

5

2
− δ = 1

N

∑

k

[
a − c

2Ek1
coth

(
Ek1

2KBT

)

+ a + 2c

4Ek2
coth

(
Ek2

2KBT

)]
,

Q = 1

3N

∑

k

[
a − c

2Ek1
coth

(
Ek1

2KBT

)

− a + 2c

2Ek2
coth

(
Ek2

2KBT

)]

1 = 1

6N
(3J2 − 4J1)z

∑

k

γ 2
k

[
1

Ek1
coth

(
Ek1

2KBT

)

+ 1

2Ek2
coth

(
Ek2

2KBT

)]
.

(11)

Away from the Mott phase, BEC always occurs in the
ground state with a finite doping ratio. In the strong correlation
limit (t�U0, U2), we find the BEC happens at k = (0, 0) in
2D and k = (0, 0, 0) in 3D. We set n0 as the atom number
density occupied on zero momentum. By separating the n0

term from the summation, (n0, Q, d) can be derived from the
self-consistent equations when T = 0. The number of singlet
pairs in the condensate can be estimated as

∑

k,α

b†
kαb†

−kαb−kαbkα =
∑

α

[∑

k �=0

nk,αn−k,α + n0,α(n0,α − 1)

]
.

(12)

3
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Figure 2. Ground state energy versus hole density δ. The solid (black) and dashed (red) lines represent the strong coupling pairing (SCP)
phase with doping δ = 0.4, 0.6. The dotted (blue) and dash-dotted (green) lines represent the spin singlet condensate (SSC) phase with
δ = 0.4, 0.6.

Figure 3. The order parameters with the change of temperature with fixed J1, J2, δ and the critical temperature with the change of δ for fixed
J1, J2. In the left two figures, J1 = J2 = −1, Q = 0 and in the right two figures J1 = 0.5, J2 = 1, Q �= 0. P represents the paramagnetic
phase. SSC and SCP represent the spin singlet condensate and the strong coupling pairing phase.

Obviously, the singlet pair density is always finite in the
condensate. In the ground state T = 0, the self-consistent
equations have two solutions: Q = 0 and Q �= 0. From
the numerical result (figure 2), we find in 2D and 3D in the
parameter range of − 3π

4 < ϕ < −π
2 , Q �= 0 corresponds

to lower energy; while in the parameter range of −π
2 < ϕ <

π
4 Q = 0 gives lower energy. In the ground state

〈b†
k bk〉 = 〈b†

i2bi2〉 = 〈b†
i3bi3〉 = 1

3 ,

indicating 〈Q2
i 〉 = 〈Q0

i 〉 = 0. This result shows that there is
a quantum phase transition at ϕ = −π

2 . For − 3π
4 < ϕ < −π

2

4
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the ground state is a Bose–Einstein condensate with a ferro-
quadruple long range order. It is just the so-called strong
coupling pairing phase (SCP) [15] in which both SO(3) and
U(1) symmetry are broken. For −π

2 < ϕ < π
4 the ground state

is a pure spin singlet condensate [15, 16] without quadruple
order. In this phase only the U(1) symmetry is broken but not
SO(3). Both two phases may correspond to the fragmented
BEC in a Bose gas. By checking several filling ratios we find
that the quantum critical point is unchanged.

In the cubic lattice, there is also a finite-temperature phase
transition. We increase the temperature for fixed δ, t, J1 and J2,
finding the order parameters of the singlet pairs and the usual
BEC end at the same temperature (figure 3). The temperature
of the phase transition with different doping ratio for fixed t, J1

and J2 is also shown in figure 3.

4. Discussion and concluding remarks

It is interesting to compare the present model and the usual
fermion t–J model. In the usual t–J model, spin exchange
between two adjacent particles is antiferromagnetic and only
spin singlet Cooper pairs may exist. At least at the mean-field
level, there is a competition between the antiferromagnetic
phase and the superconducting phase in the ground state and
the quantum phase transition occurs at a certain doping ratio.
However, in the present model two adjacent spin-1 bosons may
form either singlet or quintet pairs depending on J1 and J2.
Besides, the condensate may have a ferro-quadruple order and
the quantum phase transition occurs at a fixed parameter point
independent of the filling ratio.

In summary, to study the spin-1 boson system in optical
lattices in the strong correlation limit, we construct a t–J1–J2

model. In some parameter regions, it is found that the spin
singlet pairs are favorable and coexist with the condensate. In
addition, long range ferro-quadruple order may coexist with
the condensate. A quantum phase transition in the condensate
is also derived.
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